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A Note on the Numerical Solution 
of the Wave Equation With Piecewise 

Smooth Coefficients 
By David L. Brown 

Abstract. The numerical solution of the initial value problem for the wave equation is 
considered for the case when the equation coefficients are piecewise smooth. This problem 
models linear wave propagation in a medium in which the properties of the medium change 
discontinuously at interfaces. Convergent difference approximations can be found that do not 
require the explicit specification of the boundary conditions at interfaces in the medium and 
hence are simple to program. Although such difference approximations typically can only be 
expected to be first-order accurate, the numerical phase velocity has the same accuracy as the 
difference approximation would if the coefficients in the differential equation were smoooth. 
This is proved for the one-dimensional case and demonstrated numerically for an example in 
two space dimensions in which the interface is not aligned with the computational mesh. 

1. Introduction. In this note we consider the numerical solution by finite difference 
approximation of the scalar wave equation 

(1.1) p(x, y) aU - v * ,(X, y)vu = o at2 
on -x < x, y < xo, t > 0 with initial conditions u(x, y, 0) and au(x, y, 0)/at 
specified. Here u = u(x, y, t) is a scalar function of its arguments and p(x, y), 
p(x, y) are piecewise smooth coefficients. This problem models linear wave propa- 
gation in a piecewise smooth medium. Efficient and accurate methods for solving 
such problems numerically are of interest in the modelling of seismic wave propaga- 
tion in geophysics [1], [4]. 

Suppose for the moment that p and jt are piecewise constant. For definiteness we 
assume that -xo < x, y < oo is divided up into two semi-infinite regions by the 
curve f(x, y) = 0, and that p = p1, ,t = p1 for f(x, y) < 0 and p = P2, y = A2 for 
f(x, y) > 0. Because of the discontinuity in the coefficients along f(x, y) = 0, 
additional conditions on the dependent variable u must be specified in order to 
uniquely determine the solution of (1.1). The usual conditions are that u(x, y) and 
pL(x, y)(au/an) be continuous across the line f(x, y) = 0. (Here au/an is the 
normal derivative of u on f.) The entire problem can be reformulated as follows: 

(1.2) plutt - LizV2u u=0 forf(x, y) < 0, 
P2Utt - A2V2u = forf(x, y) > 0, 
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FIGURu 1. A piecewise constant medium 

with 

(1.3) [u(x, y)] f(xy)=o = ?, 

[MUU(X, Y)]f(x,y)=o = 0 

(plus the same initial conditions as for (1.1)). Here [g(x, Y)If(x Y)=o is the jump in g 
across the line f(x, y) = 0 and subscripts denote partial differentiation. In general 
we are interested in the numerical solution of (1.2), (1.3) for arbitrary smooth curves 
f(x, y) = 0. If a rectangular finite difference mesh is used, the (approximate) 
specification of the interface conditions (1.3) can be difficult since the curve 
f (x, y) = 0 may not be aligned with that mesh. 

The purpose of this note is to point out two simple results on difference 
approximations for (1.2), (1.3) that can be helpful in the situation just described. 
Although these results follow from well-known results for finite difference ap- 
proximations to hyperbolic equations, they are apparently not well understood. It is 
(in principal) straightforward to find finite difference approximations to the problem 
(1.1) that are of arbitrary order of accuracy (say p) when the coefficients y and p are 
smooth functions. The first result of interest is that such a difference approximation 
can be used for the problem (1.2), (1.3) with piecewise constant coefficients and will 
converge to the true solution of that problem in the limit of meshwidth going to zero. 
In particular, the method will typically be a pth-order accurate approximation to the 
differential equation (1.2) and at least a first-order accurate approximation to the 
interface conditions (1.3). (The same result holds for the corresponding piecewise- 
smooth coefficient problem as well.) 

For each frequency component of a computed solution to the problem (1.2), (1.3), 
the error can be decomposed into a phase velocity error and an amplitude error that 
is possibly complex but constant as a function of location (x, y). The second result 
of interest is that if a centered difference approximation is used to approximate the 
differential equation (1.2), the accuracy with which the phase velocity is computed is 
the same as the accuracy with which the differential equation (1.2) is approximated, 
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while the accuracy with which the amplitude is computed is determined by the 
accuracy with which the interface conditions (1.3) are approximated. (This result 
assumes, of course, that an exact representation of the initial data is used.) 

Suppose that the initial data for the problem (1.2), (1.3) consist of a wave pulse 
located somewhere to the left of the interface f(x, y) = 0 and moving initially 
towards the interface. In the exact solution to the problem, the pulse moves towards 
the interface until it reaches it. An interaction with the interface occurs, and 
reflected and transmitted wave pulses result. In the numerical solution to (1.2), (1.3), 
essentially the same phenomena are observed, but, due to the phase error of the 
solution, the wave pulse disperses and will propagate with incorrect group velocity 
both before and after it interacts with the interface. (This is well known and is 
discussed, for example, by Trefethen [6]). As a result, after some time the location of 
the pulse can be entirely incorrect. On the other hand, the amplitude of the reflected 
and transmittted pulses is determined only by the approximation to the interface 
condition (1.3) and so does not deteriorate in accuracy once the pulse has interacted 
with the interface. One can argue, therefore, that it is much more important to use a 
high-order approximation to the differential equation (1.2) than it is to use a 
high-order approximation to the interface condition (1.3). An implication of the two 
results stated above is, therefore, that an adequate numerical approximation to the 
problem (1.2), (1.3) can be obtained without explicitly approximating the interface 
conditions (1.3). This is a very important conclusion from the point-of-view of 
minimizing the complexity of a computer program which is to be used for modelling 
linear wave propagation in a piecewise-smooth medium. 

2. Decomposition of the Computational Error. The computation error associated 
with a difference approximation to the problem (1.2), (1.3) can be decomposed into 
an amplitude error and a phase velocity error. In this section we will show that if the 
difference method used to approximate the differential equation (1.2) (the "interior 
approximation") is centered, then the phase velocity error results entirely from this 
interior approximation, while the error in the amplitude results from the inaccuracies 
associated with the approximation of the interface conditions (1.3). This result is 
actually fairly obvious as we can show by the following explicit computation. 

To simplify the comparison with the solution of the difference approximation we 
choose to solve (1.2), (1.3) in one space dimension and by using a Laplace transform 
over t. The problem can be restated as follows: 

(2.1) u,,-cj2u =0 for-oo <x<0,t>0, 

v,, - c2vX=O for 0 , x < oo, t > 0, 
with interface conditions 

(2.2) u(O, t) = v(O, t), cl uX(0, t) = c2vX(O, t) 

and initial conditions 

(2.3) u(x,0) =f(x), u,(x,0)= -cf'(x) for-oo < x < oo, 

wheref(x) E Co (-oo < x < 0) for some d < 0. (Although not explicitly mentioned 
below, we take 0 < -nh in order that Eq. (2.16a) be valid. n and h are defined 
below.) Here, for convenience, we have taken Pi = P2 1 and represented I, -,/ as 
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c2, c2, the square of the velocities in each medium. The initial conditions can be 
thought of as a wave pulse moving initially to the right, for example. 

To solve the problem (2.1)-(2.3) we Laplace transform (2.1) over t and use (2.3) to 
obtain for each s with Re s > 0 the ordinary differential equations 

(2.4a) uxx (1 X) f (x) u 
2YWf(cl 

) 21x) 

and 

S2 
(2.4b) os, -7 = 0, 

C2 

where 

= w (x, s):= 2 f w(x, t) e stdt 

defines the Laplace transform of the function w(x, t). The interface conditions (2.2) 
become 

(2.5) u(O, s) = (O, s) and cl U (0, s) = C2 v(?, S). 

It is clear by substitution that a particular solution of the inhomogeneous equation 
(2.4a) is given by 

(2.6) [(x,s) = 2 - e-sfc(x-ct) dt. 

The general solution (bounded for all Re s > 0) of (2.4) is then given by 

(2.7) u(x, s) = U(x, s) + 
a,(s)esx/cl 

d(x, s) = a2(s)e-x/'c2, 

where the exponential functions esx/cl and es-/XIC2 are fundamental solutions of the 
homogeneous forms of (2.4a) and (2.4b), respectively, and a,, a are coefficients that 
will be determined by the interface conditions. Substitution of (2.7) into the interface 
conditions (2.2) gives for al, c2 the values 

(2.8) 01(s) + (0, s), ?2 (5) - 2 (' ) Cl C C1 + C2C(, ) 

Substitution of (2.8) into (2.7) follows by inverse Laplace transformation yields the 
following representation for the solution to (2.1)-(2.3) in terms of Fourier trans- 
forms: 

jO0 Cl - C2 
u(x, t) =f (x - c1t) + - + U(0, iX)ew(t?x/c dw, 

(2.9) 2 
00 

l C 
+ 

C( 

V(x, t) NO1 ~2c(, iw)elw(t-X/C2 ) do. 

An interpretation of this solution is the following: The initial pulse f(x) moves to 
the right with speed cl until it reaches the boundary. (This part of the solution 
depends only on the differential equation and the intial data.) At the boundary, it is 
partially reflected and partially transmitted. The reflection and transmission coeffi- 
cients are given by R = (cl - c2)/(c1 + c2) and T = 2c1/(c, + c2), respectively, 
and were determined by the interface conditions. Each frequency component 
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U(0, iw) of the reflected wave moves to the left with speed -cl. Similarly, each 
frequency component of the transmitted wave moves to the right with speed c2. 
(This is clear from looking at the phase of the complex exponentials in the integrals. 
Since those complex exponentials were the fundamental solutions of the differential 
equations, it is again obvious that the propagation of the reflected and transmitted 
waves is determined only by the differential equation.) 

In the rest of this section we will demonstrate that the solution of a centered 
difference approximation to the problem (2.1)-(2.3) behaves in the same way, i.e., the 
phase (and its error) are determined by the interior approximation and the reflection 
and transmission coefficients (and their errors) are determined by the interface 
approximation. 

We approximate (2.1) with a time-continuous finite difference approximation 
given by 

a2U 2 ( ) at2 - CQ(E)u, = 0, v = -n, -n - 1, -n - 2, 
(2.10) t 2 

aVP c2Q(E) vp o, p = n + 1, n +, 

where 

1n 
Q(E)-= E (EJ + E-J) h j=0 

is a centered difference operator of width 2n + 1 and consistent with a2/ax2. Here 
up= up(t) and vp = vp(t) are approximations to u(x,, t) and v(x,, t), respectively. 
Ew := wp+l, and the meshpoints xp are defined by xv = Ph + y where h < y < h. 
(The uniform meshwidth is given by h.) The interface conditions (2.2) are approxi- 
mated with the 2n relations given by 

(2.11) B(f)(E)uo(t) = Bll"(E)vo(t), M = 1, 2,..., 2n. 
For the understanding of the error, it is not important to specify the difference 
operators B(0) and B(9) in detail, although it is clear that we must require that the 
relations (2.11) be consistent with the interface conditions (2.2). The initial data for 
the problem (2.10), (2.11) are taken as 

(2.12) uv(0) = f(x^) Wt UV(O) = -cf'(xV). 

As in the continuous case, we will solve the discrete problem (2.10)-(2.12) explicitly 
using Laplace transforms. After Laplace transformation, the problem is replaced 
with, for each s with Re s > 0, the ordinary difference equations 

(2.13a) Q(E)a - ', = (i cf'(x) - I(X )x) 

2 

(2.13b) Q(E)aV-~~!FV 2 =0, 
C2 
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with interface conditions 

(2.14) BpZO(E)a0(t) = B21)(E) vo(t), u = 1,2,..., 2n. 

Since (2.13b) is a homogeneous difference equation with constant coefficients, its 
general solution is given by linear combinations of powers of the roots Kj(S), 
j = 1,2,..., 2n of the characteristic equation 

(2.15) Kn(Q(K) S) =0. 

The solution of the homogeneous form of (2.13a) is determined in a similar way, 
with corresponding characteristic roots denoted by Xj(s), j = 1, 2,..., 2n. It is well 
known (see,e.g., Gustafsson, Kreiss and Sundstrom [3, Section 5]) that for Re s > 0 
the roots Kj(s) separate into two distinct groups: M1(K) containing those roots Kj(s) 
with lKj(s)I < 1 and M2(K) containing those roots Kj(s) with lKj(s)I > 1. The 
number of roots in each group, counted according to their multiplicity is indepen- 
dent of s for Re s > 0. Furthermore, since (2.13b) is a centered difference approxi- 
mation, each of M1(K), M2(K) contains exactly n roots. Exactly the same result is 
true for M1(X) and M2(X). Hence, corresponding to Eqs. (2.7) for the continuous 
problem, the general solution (bounded for all s with Re s > 0) of (2.13) is given by 

(2.16a) ua(s)= U6T(s) + E Pj(v) X(s)v forv < 0, 
A, EM2(A) 

(2.16b) v>(s) =j E P})Kj(s)' for v >, 0, 
Kj E M1(K) 

where Up(s) is a particular solution of (2.13a) and Pj(V), Pj(V) are polynomials in v 

of degree equal to the multiplicity of Aj, respectively, Kj minus one. Since M2(Aj) 
contains n roots, the coefficients in Eq.(2.16a) depend on n free parameters r,.. ., rn. 
Similarly the coefficients in (2.16b) depend on n free parameters rn+1,... I r2n. These 
parameters are determined by substituting Eqs. (2.16) into the interface conditions 
(2.14), whence we obtain a 2n x 2n linear system of equations 

(2.17) D(s)r= = (s)b, 

where r := (rl, r2,..., r2j)T, b is a vector of length 2n and D(s) is a 2n x 2n matrix. 
The system (2.17) can be solved boundedly for r if the discrete problem (2.10)-(2.12) 
is stable. (Compare with Lemma 10.3 of Gustafsson, Kreiss and Sundstrom [3].) 

The representation of the solution of (2.10)-(2.12) in terms of Laplace transforms 
can be written down by using the following lemmas, which can be taken as obvious: 

LEMMA 1. If the difference approximation (2.10) is accurate of order p, then one of 
the AX e M2(A) can be written as 

(2.18a) A1 (s) = esh(l + O(sPh ))/ 

Similarly one of the K. E Ml (K) can be expressed as 

(2.18b) K1(5) = e-sh(l+O(sPhP))/c2 

Furthermore, A1 and Kj are simple roots and IA1(iw)l = IK1(iW) 1. 
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LEMMA 2. If (2.10) is accurate of order p, then the particular solution of (2.13a) can 
be expressed as 

(2.19) Up(s) = [x , s)(1 + O(sPhP)). 

LEMMA 3. If the interface approximation is accurate of order q, then the solution of 
(2.17) gives 

(2.20) P1(v) = Cl - C2 CJ(s)(1 + O(sqhq)), (2.20) PI (p) ~Cl + C2 
U 

- 

2c + C (s)(1 + O(sqhq)), Cl + C 

and Pj(V) = O(s#h ), PJ(V) = O(sqhq)forj + 1. 

It is obvious, therefore, that corresponding to (2.9) we have the following 
representation for the solution of the discrete problem (2.10)-(2.12) in terms of 
Fourier transforms: 

(2.21a) u 2(t) Ig f elwtUv(i) d( 
2,f00 

1 0s cl + C2 (1 + O(,q q))&(, ix) 
2,f -L 00C1 + C2 ~ ~ 

X eli(t+x(l + O(wPhP))/cl) do, 

(2.21b) Up(t)= 27j| (c2-Ic (1 + O(0qhq))U(O, i)} 

X eli(t-x(I + 
O(wPhP))/C2) do. 

(Here we have assumed that q < p.) The second integral in Eq. (2.21a) represents the 
reflected wave. Equation (2.21b) gives the transmitted wave. Comparing the Eqs. 
(2.9), we see that the reflection and transmission coefficients A and T associated with 
the difference approximation are related to the true coefficients by 

A(wh) = R(1 + O(0qhq)) and T(wh) = T(1 + O(0qhq)). 

Again, each frequency component of the reflected and transmitted wave moves into 
its respective medium with (frequency dependent) speed 

-c1(wh) = -c1(1 + O(oPhP)) and j2(wh) = c2(1 + O(oPhP)), 

respectively. Note also that since the difference approximation is centered, the 
complex exponential in each of the integrals in Eqs. (2.21) has unit magnitude, i.e. 
there is no decay of amplitude in the waves as they propagate. We have therefore 
proved 

THEOREM (DECOMPOSITION OF THE ERROR). If the difference aproximation (2.10) is 
accurate of order p, the interface approximation (2.11) is accurate of order q < p, and 
the method (2.10), (2.11) is stable, then the reflection and transmission coefficients 
R(wh), T(wh) associated with the interface will be accurate of order q while the phase 
velocities C1, C2 of the discrete media will be accurate of order p. 
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3. Convergence and Numerical Examples. In this section we explicitly calculate 
reflection and transmission coefficients for a difference approximation to the prob- 
lem (2.1)-(2.3). We also give numerical evidence to illustrate the conclusions of the 
introduction. For convenience we will actually consider a similar problem given by 

(3.1a) ut =a a2u on -1 < x <, 0 

and 

(3.1b) v = b2vxx on 0 < x < c 

with interface conditions 

(3.2) u(O, t) = v(0, t), a2Ux(O, t) = b2vX(0, t). 

For the purposes of this example we will consider a boundary value problem in 
which a signal propagates into the region [-1, cc) from the left. For this reason 
boundary conditions 

(3.3) u(-1, t) = f(t) 

are given. Furthermore we specify homogeneous initial conditions: 

(3.4) 
~~u (x,0) = ut (x,0) --0, - 1 < x < 0, 
v (x,O) = vt (x, O) -, O < x < xc. 

We now Laplace transform the problem over t and obtain for each frequency s with 
Re s > 0 a boundary value problem for the ordinary differential equation 

(3.5a) s2u =a2 -1 < x < 0 

(3.5b) s v 0b VXx X < x < xc. 

The interface and boundary conditions become 

(3.6) u(-1, s) = J(s), (0, s) = (0, s), a UX2(O, s) = b vT(O,s). 

The problem (3.5)-(3.6) has bounded solutions of the form 

(3.7) A (x, s) = le - sx/a + a2e sx/a, -1 < x < 0, 

(3.8) v(x, s) = a3esx/lb 0 < x < x, 

for all s with Re s > 0. Substituting the general solution (3.7) and (3.8) into the 
boundary conditions (3.6), we obtain a linear system of equations for the constants 
ai, i = 1, 2, 3. Solving this system, we can find the reflection and transmission 
coefficients, R and T respectively, which are given by 

(3.9) R:= 
U2 

= 
a - b 

T:2 3 = 
a 

ai a +b' a, a+ b' 

(This is, of course, the same result we found in Section 3.) 
We now approximate the problem (3.1)-(3.3) with the time-continuous difference 

approximation given by 

(3.10) - D +c2D_w., v = -N,... ,-1,0,1,... 
at 2 
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with boundary conditions w N (t) = 1(t) and initial conditions w, (0) = a w, (0)/at 
0. Here D + w= h- 'A + wi,, w (t) = w(x, t) is an approximation to u(x, t) for 
x < 0 and to v(x9, t) for x > 0. The meshpoints are given by xv, = (v - a)h where 
h = (N + a)-1. (See diagram below.) 

XN X_ N+1 X-.N+2 X_l xO ?1 x2 3 

I I F - --- I 1 11 1 1 _ 

~ h oh- 
x=-1 x=O 

Intuitively, we expect problem (3.10) to give a second-order approximation to the 
differential equation (3.1) and at least a first-order approximation to the interface 
conditions (3.2) if c. is a consistent representation of the velocity function 

c(x)= /a for x <0, 
b forx > 0. 

In this section we are particularly interested in considering the following choice for 
cV which gives a second-order approximation to the interface conditions. This 
representation was proposed by Tikhonov and Samarskil [5] for second-order 
ordinary differential equations with discontinuous coefficients: 

(a2 for i< 0, 

(3.11) c2 = + (1(-al)/b2)' forv = 1, 
tb2 for v P 2. 

(In general for the differential equation with variable coefficients utt = (a2(X)UX)X9 
cv is given by CV 2 = J(^hl)ha(x)-2 dx.) The problem (3.10), (3.11) can be solved 

TABLE 1 

Discrete L_-norm errors at t = 1.5 

Method Second-order (3. 15) Fourth-order (3.16, 

Interface Location h x < O x > O z < 0 x > 0 

1/10 1.0102 .6569 .2777 .1191 

-= 0. 1/20 .5415 .3433 .0656 .0261 
a - 0. 1/40 .1442 .1033 .0040 .0025 

1/80 .0365 .0257 .0004 .0004 

1/10 1.0201 .6381 .1564 .1431 
= 0.2 1/20 .4858 .3471 .0412 .0296 

a -0.2 1/40 .1329 .1034 .0047 .0026 
1/80 .0351 .0257 .0010 .0004 

1/10 1.0449 .6331 2635 .1355 
cc = 0. 5 1/20 .4928 .3534 .0665 .0371 

~x=O.5 1/40 .1363 .1042 .0129 .0037 
1/80 .0358 .0257 .0031 .0007 
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explicitly using Laplace transforms in a similar manner as for the continuous 
problem above. Note that, in this case, the (Laplace-transformed) "interface condi- 
tions" are taken as 

(3.12) s2WV =D+c,D _W forv = 0,1. 

_ ~ ~~~ ~ 1: . .. . . 

T |@ || 
|lA-11 

xA 
A 

+ +t 
t 2*00 

__ t = t ~~~~~~~~~~~~~ISOO 

xx 

1 X 

I X/X/ 

_~~~~~~~~ . . ... . . 4 . . 4X f . . . . . . . . . 0 .500 

' - ' I' ' r I ~ ~ ~ - -- - - -I - - - '' - -. 

-t .0 -0.8 -06 -094 -0.2 -000 0.2 0.4 OAC 0.81 .to 
X 

FIGURE 2. Second-order method with second-order interface approximation 
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The reflection and transmission coefficients can be derived, and are second-order 
accurate for all choices of 0 < a < 1. In particular, for a = 0, 

(3.13) R(sh)= R(1 + 4hb I O(s3h3)), 

T(sh) = T(1 + 8b 2s2h2 + O(s3h3)). 

Numerical computations were made for an interface problem for the wave equation 
(3.1) on -1 < x < 1 with the interface at x = 0. Initial conditions were specified so 

t 1 - -t++ 1 =8?2.O 

._ 1 tI= 1.SOO 

_ ~ ~~~~~~~~~~~~~~~~~~~ . .0_0 

- 1 OSOO 

vca 
____ t= 

~~~~~~~~~~~0.000 

-1. -0.8 -0.6 -0*4 -0.2 -0.0 0.2 0.4 0.6 0.8 1.0 

x 

FIGupU3E3. Fourth-order method with second-order interface approximation 
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_ ~ ~~~~ x .... 

'i xa I1 imo I *SO 
x -- x_ 

Sc_ 1= D.SW 

v~~~~~~~~~~~~~~~~~~~~~~~~~~~ .0 _ 

-1.0 -0*.8 -0.6 404 -0.2 -0.0 0.2 0.4 0.6 0.0 I.O 

x 

FIGURE 4. Fourth-order method with first-order interface approximation 

that a pulse would propagate from the region -1 < x < 0 to the interface at x = 0 
where reflected and transmitted signals are generated. For the interior approxima- 
tion, we used both a second-order method 

(3.14) wv(t + k) = 2wv(t) - wv(t -k) + k 2D+ (C2 D w,(t)) 
for v = 1,2,..., 2N - 1, where Nh = 1 and x>:= -1 + (v - a)h and a method 
with fourth-order space differences, 

(3.15) wv(t + k) = 2w (t) - wv(t - k) + k2D+C2cD wp(t) 

k 2h2 
24(D+D)(D C2 Dwp(t)) +D (C2D D2Dw(t))) 
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for v = 2, 3,. .., N - 2. (In the latter computations, (3.14) was used for v = 1 and 
v = 2N - 1.) We also used Richardson extrapolation in t to improve the accuracy of 
the solutions computed with (3.15) to fourth order in t. The initial conditions 
specified were 

w,(O) = exp(-160(xp + .5)2) 

and 

wp(-k) = exp(-160(xp + ak + .5)2). 

At the left and right boundaries, "nonreflecting" boundary conditions were used: 

(3.16) wo(t + k) = wo(t) + kaD,w0(t), 

W2N(t + k) = W2N(t) - kbD W2N(t). 

The values a = .5, b = 1.2 and k/h = .5 were used for the medium velocities and 
mesh ratio, respectively. 

To check the convergence rate of the method we made computations with 
meshwidths h = 1/10, 1/20, 1/40, and 1/80 and interface location parameter 
a = 0., .2, and .5. The discrete L2-norm errors on both sides of the interface at 
t= 1.5 are summarized in Table 1. (Here we define the discrete L2-norm by 
IIuP,I12 = (E$=ohu2p .) For the "O(h2)" approximation (3.14) it is evident that the 
convergence rate is 0(h2) for all three values of a. Although for the "O(h4)" 
approximation (3.15) the convergence rates are only somewhat better.than 0(h2), 
note that the magnitude of the error is greatly reduced in comparison to the 
second-order method. This is mainly due to the improvement of signal propagation 
effects that we get by using a fourth-order method in the interior. This can be seen 
graphically in Figures 2 and 3. These figures show a time history of the solution 
from t = 0.0 to t = 2.0. Figure 2 shows the results using the second-order approxi- 
mation (3.14), and Figure 3 shows the results using the fourth-order approximation 
(3.15). In these figures, the solid curve represents the true solution while the symbols 
'x' and '+' represent the calculated solution to the left and to the right of the 
interface, respectively. The meshwidth used for this calculation was h = 1/20. Note 
that both the location of the pulse and its apparent amplitude are better with the 
fourth-order method than with the second-order method. 

There does not seem to be a simple extension of this method to two space 
dimensions that will give second-order accuracy overall. However, even if the 
interface conditions are only approximated to first order, the results of Section 2 
indicate that one can expect to get much better qualitative results using a fourth-order 
difference approximation in the computations. We demonstrate this with several 
numerical examples. First, in Figure 4 we show a one-dimensional example where 
the fourth-order approximation was used in the interior of the region and a 
first-order interface approximation was applied. Even though the computed solution 
is therefore-only formally first-order accurate, the results are qualitatively better than 
in Figure 2, where the second-order method was used for the interior approximation. 

Figures 5, 6 and 7 show the results of some computations of the wave equation in 
two space dimensions. The example chosen models the interaction of waves from a 
circular source with an interface that is oriented obliquely to the computational 
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FIGuR,E 5 a. Initial conditions for two-dimensional computation 

FIGuRE 5b. Second-order method t .4 
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FIGURE 5c. Second-order method t = .8 

FIGURE 5d. Second-order method t = 1.2 
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FIGURE 5e. Second-order method t = 1.6 

FIGURE 5f. Second-order method t= 2.0 
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FIGURE 6a. Fourth-order method t = .4 
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FIGURE 6b. Fourth-order method t .8 

FIGURE 6c. Fourth-order method t = 1.2 
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FIGURuE 6f. Fourth-order method t = 2.4 

FIGupRE 7a. Fourth-order method, fine mesh t = .8 
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FIGURE 7b. Fourth-order method, fine mesh t =1.6 

FIGuRE 7c. Fourth-order method, fine mesh t =2.4 
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mesh. We approximate the wave equation in two space dimensions, 

u = (c2uj)x + (c2u,), 

with a second-order method, 

(3.17) D+?tD_tw(x, y, t) = D+?,(c2(x -h, y, t)D xw(x, y, t)) 

+D?+ (c2(x, y -h, t)D ,,w(x, y, t 

and a fourth-order method in which the term 

k2h 2 C( X ( , g 24 (D+X(c2(x - h, y, t)D+?xD2w(x y, t)) 

+2 X(C2(X- h, y, t)D w(x, Y, t))) 

and a similar term in y are subtracted from the right-hand side of (3.17). (Here the 
notations D+,q and D,q are used to denote the forward and backward divided 
differences in the q-direction.) The computational region is given by 0 < x < 1, 
0 < y < 2. The wave speed c is given by 

c(x) f*5 forx< .3 +y/5, 
_1.0 for x > .3 + y/5, 

and the initial conditions for the difference approximation are given by 

w(x, y,0) = w(x, y, k) = exp(-200((x - 1/5)2 + (y _ 1)2)), 

which models a circularly symmetric source that is initially moving both inwards and 
outwards with respect to its center. The boundary conditions were chosen to model 
transparent boundaries at x = 0, y = 0 and y = 2 and a reflective boundary at 
x = 1. The actual conditions used were difference approximations to the "absorbing" 
type Al boundary condition of Clayton and Engquist [ 2, p. 1531] for the first three 
conditions and a numerical approximation to ux(I, y, t) = 0 for the final boundary 
condition. For all computations, the mesh was uniform in both x and y and the 
timestep ratio used was k/h = .5, where h = Ax = Ay is the mesh width in both the 
x and y directions. Figures 5a-g show the numerical solution of this problem 
computed using the second-order method (3.17). The solution is displayed in 
hidden-line plots for uniformly spaced times between t = 0 and t = 2.4. Fifty points 
in x and 100 points in y were used in the computational mesh. Figures 6a-f show the 
numerical solution of the problem computed using the fourth-order method. Note 
that even after the waves interact with the interface, the fourth-order method gives 
much "cleaner" results. It is particularly evident in the plots for t = 1.6 and later 
that the dispersion error is significantly larger for the second-order method than for 
the fourth-order method. For comparison, the same computation was made with the 
fourth-order method on a finer mesh (150 points in x and 300 points in y). These 
results are shown in Figures 7a-c. Comparison of the various plots for t = 2.4 
indicate that some of the lower amplitude waves in the solution are much more 
readily discernable in the fourth-order coarse mesh computations than in the 
corresponding second-order results. These computations indicate that the analysis 
for the one-dimensional case given in Section 2 gives a good picture of what to 
expect in two-dimensional computations as well. It is clear that the numerical group 
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velocity is better approximated in the fourth-order example than in the second-order 
example, even after the interaction with the interface takes place. This again verifies 
the main point of this note, which is to point out that if one is interested in obtaining 
qualitatively correct behavior in linear wave propagation problems, the accuracy 
with which the phase or group velocity is approximated is more important than the 
accuracy with which internal boundary conditions are represented. 
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